Direct evidence for the importance of p130 in injury response and arterial remodeling following carotid artery ligation.
نویسندگان
چکیده
OBJECTIVE Remodeling of arterial morphology in atherosclerosis, hypertension, and restenosis following angioplasty involves controlled alterations in total vascular circumference which critically modulate sequelae of changes in vessel wall mass. Despite the clinical relevance of this process little is known about the pathophysiology, especially the correlation between smooth muscle cell proliferation and remodeling. METHODS Carotid artery ligation was applied to mice with targeted disruption of the p130 gene (p130 -/-). Mice were allowed to recover for 3 weeks after ligation and then perfusion fixed for histologic and morphometric analysis. RESULTS P130 -/- mice were indistinguishable from control littermates concerning size and weight. As for the aorta, carotid arteries and femoral arteries, no significant differences were found between the groups with regard to vessel size and cellular density of the vessel wall of non-instrumented vessels. In contrast, following carotid artery ligation we found p130 -/- mice (n=8) to develop a significant increase in vessel wall area compared to controls (n=9). Mean values ranged from 3.07 x 10(-2)+/-0.20 x 10(-2)-3.56 x 10(-2)+/-0.62 x 10(-2) mm(2) for p130 -/- mice versus 2.26 x 10(-2)+/-0.13 x 10(-2)-2.57 x 10(-2)+/-0.26 x 10(-2) mm(2) for controls (p=0.02) along the lesion studied. This increase in vessel wall area was primarily due to a sevenfold mean increase in neointima in p130 -/- mice yielding mean values of 0.43+/-0.18 - 1.19+/-0.70 x 10(-2) mm(2). Remarkably, despite vessel wall increase, the lumen area was not statistically different for both groups. CONCLUSIONS The data indicate that the loss of the cell cycle inhibitor p130 leads to an enhanced injury response, implicating a central role of p130 in cell cycle control during response to injury in the vessel wall. The enhanced injury response in the context of p130 -/- preserves the ability to perform perfect remodeling, thus the remodeling capacity is preserved even in the context of this injury model.
منابع مشابه
Vascular ligation response is independent of p107: stressing the role of the related p130.
Recent studies have revealed the role of the pRb family members pRb and p130 in the response to vascular injury. We evaluated the arterial injury response in the absence of p107, a protein that shares a high degree of homology with the injury-controlling p130. Carotid artery ligation and perivascular electric injury of the femoral artery were applied to p107 knockout (p107 -/-) mice, and morpho...
متن کاملDirect evidence for the importance of endothelium-derived nitric oxide in vascular remodeling.
The vascular endothelium mediates the ability of blood vessels to alter their architecture in response to hemodynamic changes; however, the specific endothelial-derived factors that are responsible for vascular remodeling are poorly understood. Here we show that endothelial-derived nitric oxide (NO) is a major endothelial-derived mediator controlling vascular remodeling. In response to external...
متن کاملPrevalence of carotid arterial diseases in patients undergoing CABG operations
Introduction: Prevalence of stroke following coronary artery bypass graft surgery (CABG) is % 2.1-5.2 and associated with high mortality. The purpose of this study was to investigate the prevalence of carotid artery disease in patients undergoing CABG surgery. Methods: This cross-sectional study was performed in the years 2010-2011 on 192 patients who underwent open heart surgery (CABG) in...
متن کاملPresentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall
Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the substitution of the blood pressure changes in the central arteries such as carotid with the blood pressure changes in the brachial results in error in the blood...
متن کاملAlterations of arterial physiology in osteopontin-null mice.
OBJECTIVE In this study, we characterized the effects of an osteopontin (OPN)-null mutation in normal arterial function and remodeling in a murine model. METHODS AND RESULTS OPN-null mutant mice were compared with wild-type mice before and after carotid artery ligation. Before ligation, OPN-null mice had increased heart rate, lower blood pressure, and increased circulating lymphocytes compare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2002